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Abstraet--A model is presented which demonstrates that the process of flooding and flow reversal can be 
explained on the basis of a film mechanism. The model predicts well the gas flow rate at which flooding and flow 
reversal begins and ends for a given liquid flow rate and the presence of a hysteresis loop between flooding 
and flow reversal. The predictions of the theory are in satisfactory agreement with experimental flooding 
data. 

INTRODUCTION 
The process of flooding in vertical pipes or channels is an interesting and important 
phenomenon that has attracted the attention of many investigators. It occurs for countercurrent 
flow of gas and liquid where the liquid flows downward and the gas upward. Consider a pipe 
where liquid is introduced at the middle as a film, while gas flows from the bottom to the top 
(see figure 1). For low or zero gas flow rates the liquid will flow downward. As the gas rate 
increases, some of the liquid will be carried upward so that simultaneous upward and 
downward liquid film flow will exist. Finally, for sufficiently high gas flow rates the liquid will 
flow only in the upward direction. Conversely, if the gas flow rate is kept constant and one 
increases the liquid feed rate, one finds that at low liquid rates and moderate gas rates the liquid 
will flow down. With increasing liquid feed a maximum value for downward flow in the film is 
reached. Increasing the liquid feed rate further will not alter this maximum downflow rate, but 
the "excess" liquid will move upward. Thus, for each gas flow rate there exists a maximum 
value of the liquid film flow rate that can move downward countercurrent to the gas flow. This 
downward flow rate of liquid cannot be increased unless the gas flow rate is decreased. Thus, 
the flooding phenomenon is a process that limits the downward countercurrent liquid flow rate. 

The flow reversal phenomenon is the inverse of the flooding process. At high gas flow rates 
a climbing film exists. As the gas flow rate is decreased a point will be reached where partial 
downflow of liquid takes place. Further decrease in the gas flow rate will result in dryout of the 
climbing film and the flow returns to the condition of a downward falling film with upflow of 
gas. 

Flooding experiments have been carried out by many investigators in basically two types of 
experimental equipment. In the first type the liquid is introduced in a mid-section of the pipe 
through a well designed entrance device, normally through a sintered tube, that insures 
homogeneous distribution of the liquid around the inner periphery of the pipe. Equipment of 
this type was used by Hewitt & Wallis (1963), Hewitt et al. 0965), Clift et al. (1966), Suzuki & 
Ueda (1977) and Dukler & Smith (1977). 

A second experimental arrangement consists of upper and lower tanks with the liquid 
entering the pipe from the top tank by gravity. This arrangement was used by Imura et al. (1977) 
and Bharathan, et al. (1978). Pushkina & Sorokin (1969) used both types. Although experiments 
with feed located at the top are easier to carry out, this arrangement makes it impossible to 
explore the phenomena of transition from downflow to upflow in the film. Furthermore, the flow 
reversal process cannot be explored. 
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Figure 1, Climbing and falling film. 

A review of experiments, correlations and analytical approaches to flooding which have 
appeared in the published literature and reports has been presented by Dukler & Smith (1977) 
and Tien et al. (1979). A large variety of empirical correlations have been proposed, the most 
widely used being that of Hewitt & Wallis (1963). 

Uosp ,/  / "2_.f  uLsp,. '/: 
[gD(&-  po)l'/ZJ ~ [ [gD(&-  pc,)I'/2S = C. [1] 

The constant, C, has been shown to vary with the equipment size, the range of flow velocities 
and in some cases the entry configuration and fluid properties. In this equation U(;s and U~.s are 
the superficial velocities of the gas and liquid respectively, pc and & the gas and liquid 
densities, g the acceleration of gravity and D the tube diameter. Many modifications of this 
equation have been proposed based on specific data sets. 

Approaches to a theoretical prediction of the flood point based on physical mechanism have 
been few in number. Shearer & Davidson (1965), Centinbudakla & Jameson (1969), as well as 
Imura et al. (1977) all suggest that flooding takes place as the result of the formation of an 
unstable wave that rapidly grows until it bridges the tube. Then the liquid is carried up by the 
gas as a slug or as an entrained phase. In this case the prediction of the flood point comes down 
to predicting the condition for instability. Measurements by Dukler & Smith (1977) and Suzuki 
& Ueda (1977) have convincingly shown that bridging does not occur. Furthermore, none of 
these theories show agreement with experiment except over narrow ranges of data, usually for 
small tube diameters and at low pressures. 

Dukler & Smith (1977) observed the presence of drops at or just below the gas rate at which 
flooding takes place. They suggested that flooding takes place when the gas rate is sufficient to 
lift the largest drop against gravity. A mathematical model of this process results in the 
following theoretical equation for the flooding condition 

UGsPGI/4 = 2 . 8 .  12l 
[O 'g(p  L -- p o ) ]  114 

Pushkin & Sorokin (1969) developed an identical result using experimental flooding data and 
dimensional analyses and obtained the constant 3.2 as against 2.8 above. The approach above 
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gives a theoretical basis for the formerly empirical result. However, the model predicts 
unrealistically large drop sizes under certain conditions and is in poor agreement with some 
published data. 

In this paper a relatively simple, self-consistent film model is proposed that appears to 
explain the process of flooding and flow reversal. It ignores the presence of waves and 
attributes the process of flooding to the balance between gravity and interfacial shear on the 
smooth film. 

THEORY 
Figure 1 shows the geometry of film flow in the vertical pipe. Liquid is introduced 

circumferentially somewhere between the top and bottom of the pipe where gas flows upwards. 
At gas rates below flooding the liquid flows downward as a falling film. At the start of flooding a 
small part of the liquid flows upward as a film and a situation of simultaneous falling and 
climbing films exists as shown in figure 1. As the gas rate is increased the fraction of feed liquid 
which flows upward increases until a gas rate is reached where all of the liquid flow is upward 
in the film. 

A force balance for steady laminar flow on a thin annular ring of film extending from the 
wall a distance y into the liquid gives 

- 
T = ~ L ~ y  = Ti - -  + P t . g  ~ - Y [3] 

where z is the shear stress at y, ~'i the interfacial stress, u is the local liquid axial velocity, z and 
y the axial and radial coordinates, 8 the film thickness, /zL and pL the liquid viscosity and 
density, p the static pressure and g the acceleration of gravity. 

Equation [3] assumes thin films, that is 8 ~D[2  where D is the tube diameter. The 
comparable equation for thick films has been presented (see Hewitt & Hall Taylor 1970); 
however, numerical computations show little difference in the results. Thus, the simpler form 
above has been used in the development which follows. 

Solving [3] for velocity 

[41 

Note that u is designated positive in the positive (upward) z direction. Integrating [4] provides 
the liquid flow rate in the film in terms of the superficial liquid velocity, ULs. This is negative for 
net downflow and positive for net upflow. 

4 1 2 1 d p  3 
[5] 

A force balance on the gas core yields 

dp _ 4 ~  

dz D -  28 P~g [6] 

where po is the gas density. Substituting in [5] and rearranging, yields 

ULS#L D 2 
zi = ~ +-~(pL - po)g6. [7] 
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Now it is necessary to relate Ti to the gas flow rate. The basic mechanisms which determine 
interfacial shear are poorly understood and the relationships which are available are largely 
empirical. It is not the purpose of the work reported here to address that problem. Instead, we 
adopt one of the correlations recently suggested which does an adequate job of describing 7i. 

One approach correlates the friction factor in terms of the relative film thickness S/D. Wallis et 
al. have recommended several such correlations, the most recent of which (Bharathan 1978) 

proposes the form, 

” 

Thus, the equation 

yields the required relation between the gas flow rate U GS, the liquid flow rate U,, and the film 
thickness S. In dimensionless form, this relation takes the form 

where 

uts = lJL 
D*(PL - PGk 

u,, 

l/2 

ubs = (pL _ p$2v(g~) UC,. 

[Ill 

u21 

]131 

Given Uts and S’ one can calculate U&. Note that ULs is negative for falling films and 
positive for upflow. In order to obtain a solution to equation [lo] the coefficients A and B and 

the exponent n which define fi must be known. Bharathan (1978) recommended the following 
values: For a 2Scm pipe, A =0.005, B = 280 and n = 2.13. For a 5.1 cm pipe, A= 0.005, 
B = 406 and n = 2.04. Clearly, before this approach can provide a general solution to predicting 
flooding, it will be necessary to have a sound non-empirical basis for predicting the interfacial 
friction factor. 

The solutions given by [lo] appear in figures 2 and 3 for pipe diameters of 2.5 and 5.1 cm 
respectively. The results are conveniently represented as curves of U& vs S/D for parameter 
of U&. Negative U& indicate downflow. It is important to note that in general once Uts and 
lJ& are specified, three formal solutions exist. That is, the force balance is satisfied for each 
flow rate pair downflow at two film thicknesses and for upflow at one. However, the results also 
show that above a certain value of U& no solution for downflow exists and we presume this to 
indicate the end of the flooding process and the existence only of upflow. On the basis of the 
analysis which is presented below we conclude that the dashed portions of each curve represent 
unstable physical conditions. As a result it seems a reasonable physical speculation that curves 
connecting the maximum values of U As for stable downflow represent the locus of points 
along the flooding curve. In a similar manner a curve connecting the minimum values of U& 

for stable upflow represents the locus points along the flow reversal curve. 
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Figure 2. Film thickness for falling and climbing films in 2.5-cm dia. pipe. 
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Figure 3. Film thickness for falling and climbing rims in 5.l-cm dia. pipe. 

When multiple solutions exist from the formulation of a physical problem, one searches for 
criteria on which to decide which solutions are physically realistic and thus can be expected to 
be observed. Two criteria are applied here: (a) stability analysis and (b) limiting flow as dictated 
by kinematic wave theory. 
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Stability analysis 
Define the dimensionless interfacial shear as 

(PL -pa)gD" [141 

Equation [7] which results from a force balance on the liquid, becomes 

,_  U~.s 2 , 
r~-  ~ + ]8 . I15] 

The relation between r~ and 8' ~is dictated by this equation is shown as the solid lines in figure 4 
for parameter values of U'LS. An independent expression for ~-~ is obtained from gas phase 
through [8] and [9]. 

,r~= [A + B(8')" ]2~U?~)82,),. [161 

The family of broken curves gives the relationship between z',- and 8' as dictated by this 
equations for a 2.5-cm dia. tube. The intersection of any two curves gives the solution for that 
particular flow rate pair. For example, consider an absolute value of U'LS = 10 -6 and UDs = 0.5. 
Three solutions exist, indicated by points A and B for downflow where U'LS ---- - ] 0  -6 and C for 
upflow where ULs = + 10 -6. 

The stability of these solutions can be determined by the manner used when multiple 
solutions are encountered in a continuous stirred tank (CSTR) where a chemical reaction takes 
place. In that case a graph of concentration vs temperature is used and the steady state of a 
CSTR is given by the points of intersection of the material and energy balance curves. In this 
case ¢' and 8' are analogous to the concentration and temperature in a CSTR. 
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Figure 4. Stability diagram D = 2.5 cm. 



PREDICTION OF FLOODING AND FLOW REVERSAL FOR GAS-LIQUID FLOW IN VERTICAL TUBES 7 

Consider the situation at point A. If 8' randomly increases by a small amount, one can 
observe that the shear stress provided by the gas (the broken line) is less than that needed to 
maintain this new film thickness. As a result the film thickness will decrease and return to its 
original value at A. The solution at A is thus stable. Now consider the solution expressed by 
point B. If the film thickness momentarily increases due to a disturbance, the shear stress 
increase in the gas phase exceeds that needed by the liquid to maintain that thickness. Thus, the 
film thickness will increase still further and the condition will diverge from its original state. It 
is thus unstable and unlikely to be observed physically except over transient periods. For the 
flow rate pairs used for illustration the same conclusion applies to point C. An examination of 
these curves shows that of the two solutions for downflow (U'Ls < 0) only the one with the 

U' ' 8' smaller film thickness is stable. In the case of upflow ( Ls > 0) the *i vs curves represented 
by the solid lines display minima. Intersections which take place to the left of the minimum are 
stable, as at point D. Those to the right are unstable such as at F. Point E represents an 
intersection at the minimum which is at the condition of neutral stability. Experimental data for 
upward film flow confirm the existence of the minimum in the zi vs 8 curves as shown here. 
Furthermore, experiments show that as the gas rate is decreased below the value for minimum 
shear, large disturbance waves appear (Hewitt & Hall Taylor 1970). This analysis suggests that 
the point is identically the condition where the film becomes unstable. 

One may visualize the behavior of the system as follows: for zero gas velocity and a given 
value of U'LS the liquid film flows downward and its thickness, 8', is given by the Nusselt 
solution ([10] for Ubs = 0). As the gas rate increases, the film thickness increases as given by 
the single valued stabled solution. Finally, the maximum is reached and no solution exists 
beyond this point as U'as is increased. At this point, some of the liquid starts to move upwards 
and this is the initial point of flooding. 

As the gas flow rate increases, the liquid flowing downward decreases along the locus of the 
maxima (the dotted line in figures 2 and 3), each maximum corresponds to a different downward 
liquid flow rate. "One reaches the maximum of the maxima at ULS = 0. This point is the end of 
the flooding process and thereafter the flow is only upward. Increasing the gas flow rate causes 
further decrease in the thickness of the climbing film. 

In the flow reversal process the gas flow rate decreases and a point is reached at which the 
solution becomes unstable. For small liquid flow rates the film will become unstable above the 

¢ _ gas velocity for Uts -O. Then the flow reversal will follow the flooding curve in the reverse 
direction. For higher liquid flow rates the instability point occurs below the maximum of the 
curve U~s = 0. Therefore, upward film flow will persist even at gas velocities where downflow 
is possible. This explains the hysteresis observed in experiments. When the point of instability 
is reached a switch to the previous flooding path must take place. This result is consistent with 
experiment which shows little or no hysteresis at low liquid rates but a substantial hysteresis 
loop at high rates. 

Kinematic wave analysis 

Lighthill & Whitham (1955) presented a theory of kinematic waves, based on the continuity 
equations, which they used to analyze flood waves and traffic on highways. Once a local 
concentration was defined they were able to show that flow limitations could be expected to 
take place when the velocity of propagation of a kinematic wave became zero. Zuber (1964) 
applied this idea to a series of problems in dispersed two phase flow. The liquid film thickness 
(or void fraction) can be considered a "concentration". Now it is of interest to explore the 
condition under which the velocity of propagation of a kinematic wave will be identically zero. 
Under these conditions small disturbances or changes in film thickness cannot propagate along 
the tube and flooding will result. 
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Define a as the tube section average void fraction. The equation of continuity written for 
the gas over a differential length of tube (gas density constant) is 

Oa i~ 
at +~z (aU'~) : 0 1171 

where t is time and Uc is the true average gas velocity. This equation can be rearranged as 

: o  
o t  LOO~ J dz  

1~81 

0 dUas 
-~--a (aUG) : da : Ck. [191 

Equation [17] suggests that changes in the void fraction propagate in the z direction with a 
velocity, Ck. Thus to find the flooding point we search for the condition at which Ck = 0. Since 

a = (1 - 2 t ~ ' )  2 1201 

Ck is zero when 

dUas _ dUbs  = 0 [21] 
da dS' " 

But the relationship between U~s and 3' has already been established in [10] and plotted in 
figures 2 and 3. This kinematic wave criteria thus dictates that flooding will take place at the 
location of the maxima for each parametric value of ULs. That this criteria is identical to the 
stability criteria discussed above is an interesting result, the significance of which is not yet 
apparent. 

Discussion and comparison with theory 

The film theory presented here is fully consistent with qualitative trends indicated in a 
variety of observation and experimental measurements. 

(a) The gas rate required for flooding decreases with increasing liquid rate. 
(b) The gas flow rate at the end of the flooding process is independent of the liquid flow 

rate. 
(c) At low liquid rates the g~s velocity required for flooding varies approximately as D 1/4. 
(d) As the gas rate is increased the film thickness remains reasonably constant, until 

flooding is approached and then increases rapidly near the flood point. 
(e) A hysteresis loop exists at higher liquid flow rates so that with decreasing gas rate 

downflow of liquid begins at lower gas flow rates than required to eliminate downflow as the gas 
rate is increased. 

Quantitative comparisons between this theory and data appear in figures 5 and 6. Experi- 
mental data for flooding using air-water in a 5.1-cm tube appear in figure 5. The solid curve 
represents this theory and agreement with data is reasonably satisfactory. Prediction of [1], the 
empirical correlation of Hewitt & Wallis (1963), is shown as the dotted curve. Values of C 
varying from 0.8 to 1.0 have been suggested. The range of predictions between these two values 
is seen to bracket the data, however, no basis for selecting the correct value is apparent. The 
theoretical result for D = 2.5 cm appears in figure 6 compared with Bharathan data for 2.5 cm 
dia. Agreement with data is seen to be good. Also included are the data of Hewitt et al. (1965) 
taken in a 3.2 cm dia. tube. This includes measurements where flow reversal information was 
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Figure 5. Comparison of theory and experiment D = 5.1 cm. 
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Figure 6. Comparison of theory and experiment D = 2.5 and 3.2 cm. 

obtained. It was not possible to make theoretical calculations in the absence of interfacial 
friction factor data for their tube size. However, interpolation between the theoretical curves of 
figure 5 for 5.1 cm and figure 6 for 2.5cm shares reasonably good agreement between this 
theory and data both for flooding and flow reversal. Note that the film Reynolds number for the 
range of data and calculations given in figures 5 and 6 is less than 1000 and thus the assumption 
of laminar flow is indeed valid. 

Various studies have shown that entry configuration and length all influence the location of the 
flooding curve. This film theory suggests that such effects take place through the changes in 
interfacial s hear which re suit from these differe nt configurations and lengths. When comparisons are 
made between the predictions of this film theory which incorporates a realistic interfacial shear 
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model for the experimental configuration actually used, the results are acceptable as indicated in 
figures 5 and 6. The deviations observed can readily be understood by the limitations of the friction 
factor correlations. 

Summary and conclusions 
A film model is developed which is applied to the prediction of the flooding and flow 

reversal process. The theory, which requires as an input an expression for the interfacial shear, 
predicts a variety of characteristics of the flooding process. The theoretical flooding and flow 
reversal curves are in satisfactory agreement with data. The influence of entry and exit 
configuration and tube length which have been reported to influence the flooding curve are 
suggested to take place through changes in interfacial shear. 
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